Polynomials with Positive Coefficients:
 Uniqueness of Best Approximation

Eli Passow*
Department of Mathematics, Temple Unitersity Philadelphia, Pennsylvania 19121
Communicated by John R. Rice

Received February 25, 1976

1. Introduction

In a recent paper [1] Chalmers has studied in a general framework the question of uniqueness of best approximation of a continuous function by polynomials which satisfy certain linear restrictions. His results are applicable to many of the standard constraints which have been investigated, such as monotone approximation [6], restricted range approximation [9. 10]. restricted derivative approximation [8], and approximation by polynomials with bounded coefficients [7]. In all of these cases the uniqueness results had been demonstrated previously. The purpose of this note is to apply Chalmers' method to a situation in which uniqueness has not yet been established, and, thereby, to furnish an additional example of the utility of Chalmers' approach.

2. Statement of Problem

Let V^{n} be the set of all algebraic polynomials of degree less than or equal to n, and let $V_{0}{ }^{\prime \prime}=\left\{p: p(x)=\sum_{k=0}^{n} a_{k} x^{k}(1-x)^{n-k}, a_{k}=0, k=0,1 \ldots, n\right.$. $p \in V_{\theta}{ }^{\prime \prime}$ is called a polynomial with positive coefficients (PPC). Such polynomials. which are generalizations of Bernstein polynomials, were studied by Jurkat and Lorentz [2] and Lorentz [4. 5], who were primarily concerned with density and degree of approximation questions. For f a nonnegative function in $C[0,1]$ we consider the approximation of f by polynomials in $V_{0}{ }^{\prime \prime}$. For n fixed, it follows from the usual compactness arguments that there exists a best nth degree PPC approximation to f : that is, there exists $p^{*} \in V_{0}{ }^{\prime \prime}$ such that ${ }_{1}^{2}\left|f-p^{*}\right|_{1}^{\prime} \leqslant l f-p$ for all $p \in V_{0}{ }^{\prime \prime}$. Our concern is to demonstrate the uniqueness of p^{*}.

[^0]Remark. Since each $p \in V_{0}{ }^{n}$ is nonnegative, the restriction of nonnegativity imposed on f is a natural one. Indeed, there are simple examples of functions which are not nonnegative for which the best PPC approximation is not unique.

The notion of Hermite-Birkhoff interpolation (see [3] for definitions) has been crucial in uniqueness questions of this type. Here, however, there is a difference from the usual case, since we will have to consider HermiteBirkhoff interpolation with linear combinations of derivatives prescribed. Problems of this type have been studied in [3].

3. The Main Results

Theorem 1. Let $f \in C[0,1], f(x) \geqslant 0$ for all $x \in[0,1]$. Then there exists a unique $p^{*} \in V_{0}{ }^{n}$ such that $\left\|f-p^{*}\right\| \leqslant\|f-p\|$ for all $p \in V_{0}{ }^{n}$.

Proof. If $p(x)=\sum_{k=0}^{n} a_{k} x^{k}(1-x)^{n-k}$, then, for $j=0,1, \ldots, n$,

$$
\begin{equation*}
p^{(j)}(0)=\sum_{i=0}^{j}(-1)^{j-i}\binom{j}{i} i!\frac{(n-i)!}{(n-j)!} a_{i}=\sum_{i=0}^{j} b_{j i} a_{i} \tag{1}
\end{equation*}
$$

If we consider (1) as a system of linear equations in the unknowns a_{i}, then the matrix $B=\left(b_{j i}\right)$ is triangular, with nonzero diagonal elements. Hence, B is nonsingular, so that there exists a unique solution to (1) given by

$$
\begin{equation*}
a_{k}=\sum_{j=0}^{k} \frac{1}{j!}\binom{n-j}{k-j} p^{(j)}(0), \quad k=0,1, \ldots, n \tag{2}
\end{equation*}
$$

We now define $n+1$ linear functionals on V_{n} by $L_{k} p=\sum_{j=0}^{k} c_{k j} p^{(j)}(0)$, $k=0,1, \ldots, n$, where $c_{k j}=(1 / j!)\binom{n-j}{k-j}$. Our linear constraints are

$$
\begin{equation*}
L_{k} p \geqslant 0, \quad k=0,1, \ldots, n \tag{3}
\end{equation*}
$$

since if p satisfies (3), then, by (2), $p \in V_{0}{ }^{n}$.
We now use the results of [1, Example 4]. Let e_{x} denote point evaluation at x. To prove uniqueness, we must show that the set $S=\left\{L_{k_{0}}, L_{k_{1}}, \ldots\right.$, $\left.L_{k_{r}}, e_{x_{r+1}}, \ldots, e_{x_{n}}\right\}$ is independent in the dual of V^{n} for any $0 \leqslant k_{0}<k_{1}<\cdots$ $<k_{r} \leqslant n, 0 \leqslant x_{r+1}<\cdots<x_{n} \leqslant 1$, with $e_{x_{j}} \neq L_{k_{i}}$ for all $i=1,2, \ldots, r$; $j=r+1, \ldots, n$. (Note that $L_{0} p=p(0)$ and $L_{n} p=p(1)$, and that these are the only point evaluations among the $L_{k_{i}}$. Thus, the restrictions $e_{x_{j}} \neq L_{k_{i}}$ may be replaced by $x_{r+1} \neq 0$ if $k_{0}=0$, and $x_{n} \neq 1$ if $k_{r}=n$. On the other hand, if $x_{r+1}=0$ or $x_{n}=1$, then we may replace $e_{x_{r+1}}$ by L_{0} or $e_{x_{n}}$ by L_{n}. Without loss of generality, we may thus assume that $x_{r+1} \neq 1$ and $x_{n} \neq 1$.) The independence of S is equivalent to the poisedness of the following Hermite-Birkhoff interpolation problem:

Let $0<x_{r+1}<\cdots<x_{n}<1$. Does there exist a nontrivial $p \in V^{* *}$ such that

$$
\begin{array}{rccc}
\sum_{j=1}^{k} c_{b, j} p^{(j)}(0)= & 0 . & k \quad k_{0}, k_{1} \ldots \ldots k_{r} \\
p\left(x_{j}\right) & 00 & j \cdots r & \ldots \ldots n^{3} \tag{5}
\end{array}
$$

The answer to this question is given by the next result. A set of functions $\left\{u_{i}\right\}, i=0.1 \ldots, m$, is a Chebrshee sistem on (a, b) if every nontrivial linear combination of $\left\{u_{;}\right\}$has at most m distinct zeros on (a, b).

Lemma. Let $0 \quad k_{0} \cdots k_{1}, \cdots, k_{3} n$ be a sequence of integers. Then the set of functions $\left\{x^{n}(1 \cdots x)^{n-m}\right\}, i=0,1 \ldots, m$ is a Chebysher sustem on $(0,1)$.

Proof. Let $p(x)=\sum_{i=0}^{m} b_{i} x^{h_{i}}(1-x)^{n} x_{i} \quad x^{\prime \prime} \sum_{i=1}^{i / k} b_{i}\left((1 \cdots x)^{i} x\right)^{n-i_{i}}$ $x^{h} q(x)$. Let $u==(1-x)\left(x\right.$. Then $u \in(0, \infty)$ and $q(x) \quad t(u) \cdots \sum_{i=0}^{m} b_{i} u^{n \cdots i_{i}}$. Since $\left\{u^{n-\lambda_{i}}\right\}, i:=0.1, \ldots, m$, is a Chebyshev system on ($0, \infty$) [11, p.27], t has at most m distinct zeros on $(0, \infty)$ and q (and hence p) has at most m distinct zeros on (0,1).

To prove Theorem 1, suppose $p \in V^{\prime \prime}$ satisfies (4) and (5). Writing $p(x)$ $\sum_{k=0}^{n} a_{k} x^{n}(1-x)^{n-k}$, we have from (4) that $a_{k}: 0$ for $k=k_{0} \cdot k_{1} \ldots . . k_{n}$. so that $p(x) \quad \sum_{k=0 L_{i * k_{i}}}^{n} a_{k} x^{n}(1-x)^{n-k} . p$ is thus a linear combination of $n-r$ functions of the form $x^{k}(1-x)^{n-l}$. Therefore, by the Lemma if p is nontrivial, then it cannot vanish at more than $n \cdots r$ I points of (0.1 . . Hence, by $(5), p(x)=0$. so that S is independent, and p^{*} is unique.

We turn now to a characterization of the best PPC approximation. A point $x \in(0.1)$ is called an extreme point for f, p if $f(x) \cdots p(x) \cdots f$. If $f(0)-p(0)<\|-p\|$ and $L_{i} p=0$ for $i * i_{1} \ldots, i_{m}$, then 0 is said to be an extreme point of multiplicity m for f, p. If $f(0) \cdots p(0)=f-p$ and $L_{i} p=0$ for $i=i_{1}, \ldots, i_{m}$, then 0 is an extreme point of multiplicity m for f, p if $i_{1}=0$, and of multiplicity $m=1$ if $i_{1}=0$. Finally, $x=1$ is an extreme point for f, p if $f(1)-p(1)=f-p$, and $L_{n} p=0$. The set E of all extreme points for a pair f, p is called the extremal set, and the number of points in E (counting multiplicity) is called the order of E. Our final result, which gives a partial characterization of the best PPC approximation. then follows from [1, Theorem 2].

Theorem 2. If $p^{*} \in V_{n}{ }^{\prime \prime}$ is the best PPC approximation to f. then there exists an extremal set for f, p^{*} of order $=n-2$.

Acknowledgment

The author is indebted to the referee for finding a gap in the proof of Theorem 1.

References

1. B. L. Chalmers, A unified approach to uniform real approximation by polynomials with linear restrictions, Trans. Amer. Math. Soc. 166 (1972), 309-316.
2. W. B. Jurkat and G. G. Lorentz, Uniform approximation by polynomials with positive coefficients, Duke Math. J. 28 (1961), 463-474.
3. S. Karlin and J. M. Karon, Poised and non-poised Hermite-Birkhoff interpolation, Indiana Univ. Math. J. 21 (1972), 1131-1170.
4. G. G. Lorentz, The degree of approximation by polynomials with positive coefficients, Math. Ann. 151 (1963), 239-251.
5. G. G. Lorentz, Derivatives of polynomials with positive coefficients, J. Approximation Theory I (1968), 1-4.
6. G. G. Lorentz and K. L. Zeller, Monotone approximation by algebraic polynomials, Trans. Amer. Math. Soc. 149 (1970), 1-18.
7. J. A. Rouler and G. D. Taylor, Uniform approximation by polynomials having bounded coefficients, Abh. Math. Sem. Univ. Hamburg 36 (1971), 126-135.
8. J. A. Roulier and G. D. Taylor, Approximation by polynomials with restricted ranges of their derivatives, J. Approximation Theory 5 (1972), 216-227.
9. G. D. Taylor, On approximation by polynomials having restricted ranges, SIAM J. Numer. Anal. 5 (1968), 258-268.
10. G. D. Taylor, Approximation by functions having restricted ranges, III, J. Math. Anal. Appl. 27 (1969), 241-248.
11. S. Karlin and W. J. Studden, "Tchebycheff Systems: With Applications in Analysis and Statistics," Wiley, New York, 1966.

[^0]: * Supported in part by a Temple University Grant-In-Aid of Research.

